Slopes for higher rank Artin–Schreier–Witt towers
نویسندگان
چکیده
منابع مشابه
Newton Slopes for Artin-schreier-witt Towers
We fix a monic polynomial f(x) ∈ Fq[x] over a finite field and consider the Artin-Schreier-Witt tower defined by f(x); this is a tower of curves · · · → Cm → Cm−1 → · · · → C0 = A, with total Galois group Zp. We study the Newton slopes of zeta functions of this tower of curves. This reduces to the study of the Newton slopes of L-functions associated to characters of the Galois group of this tow...
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملThe Main Conjecture of Modular Towers and Its Higher Rank Generalization
— Publication: In Groupes de Galois arithmetiques et differentiels (Luminy 2004; eds. D. Bertrand and P. Dèbes), Sem. et Congres, Vol. 13 (2006), 165–230. The genus of projective curves discretely separates decidedly different two variable algebraic relations. So, we can focus on the connected moduli Mg of genus g curves. Yet, modern applications require a data variable (function) on such curve...
متن کاملGENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2018
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7162